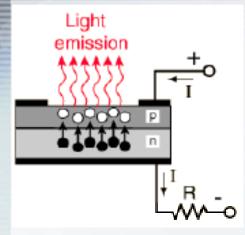
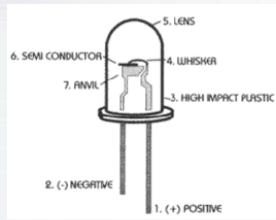

Light Emitting Diode (LED)

Shengyao Li

History of Light Bulbs

- (A) 1880s illustration of the nightly Illumination of a gaslight with a thorium oxide-soaked mantle.
- (B) Replica of Edison's lamp.
- (C) Contemporary compact fluorescent lamp.
- (D) High-pressure sodium lamp.


Facts about incandescent light bulbs:

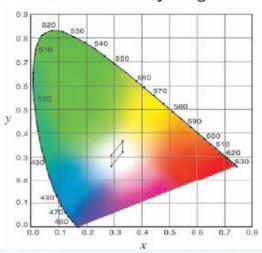

- Low energy efficiency
- Limited color choice
- Short useful lifetime

Facts about fluorescent lamp:

- Better energy efficiency
- Uniformity of white light
- Mostly mercury based
- Recycling issues

Brand New Quantum Devices - LED

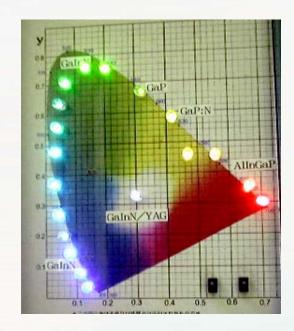
LED Chip

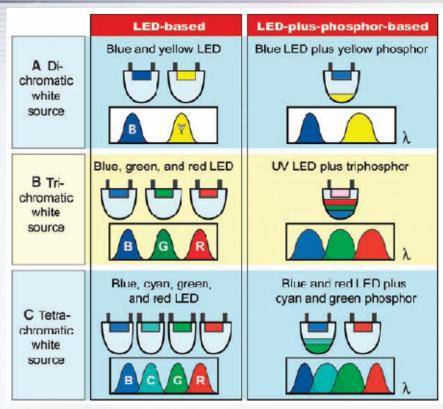

LED Package

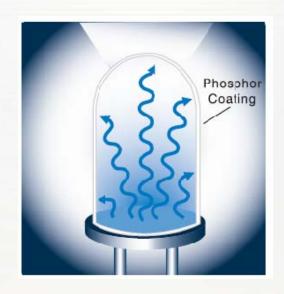
Mechanism

- Basic semiconductor device
- Converts electric energy into light
- Composed of N-type & P-type regions
- Electron hole combination emits light
- Semiconductor materials dictate the emitted photonic frequency and efficiency
- Different materials produce different color of light

Light Colors and Corresponding Materials



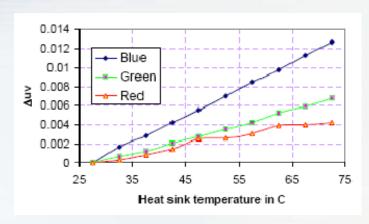

Comparison of chip technologies for wide angle, non-diffused LEDs


STANDARD INTENSITY				
LED Color	Chip Material	λpk (nm)	lv(mcd) @ 20mA	
Red	GaAsP/GaP	635	120	
Orange	-	-	-	
Amber	GaAsP/GaP	583	100	
Green	GaP	565	80	
Blue	-	-	-	
Cool White	-	-	-	
Warm White	-	-	-	

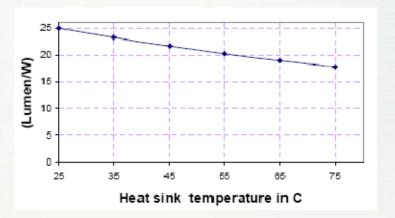
HIGH INTENSITY				
Chip	λpk	lv(mcd) @		
Material	(nm)	20mA		
AllnGaP	634	5,300		
AllnGaP	605	2,000		
AllnGaP	592	5,300		
InGaN	520	2,400		
InGaN	465	700		
InGaN	5,500 k	1,560		
InGan	3,300 k	1,800		

Current Area of Interests — White LEDs

Common phosphor material:

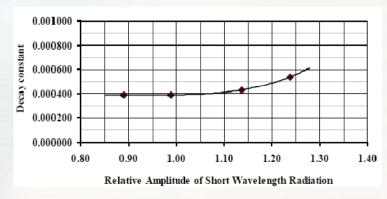

Cesium-doped yttrium-aluminum-garnet (YAG)

- ●Color rendering index (CRI) value the color difference between measured color and reference color based on blackbody radiation
- •High CRI value reflects "true color"
- Tradeoff between luminous efficiency and color rendering for LEDs
- Dichromatic white LEDs: Best luminous efficiency (425 lm/W) + lowest color rendering capability.
- Tetrachromatic white LEDs: Excellent color rendering capability + poor luminous efficiency.
- ●Trichromatic white LEDs are in between with ~300 lm/W

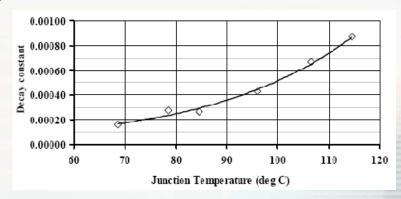

Data Display Products, in Solid-State Lighting Catalog (2005).

LEDs' Color Stability

Failure Analysis of White LEDs



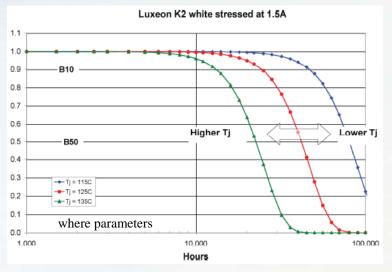
minimum-perceptible-color-difference variation in red(610 nm), green(540 nm), blue(470 nm) LEDs with respect to temperature

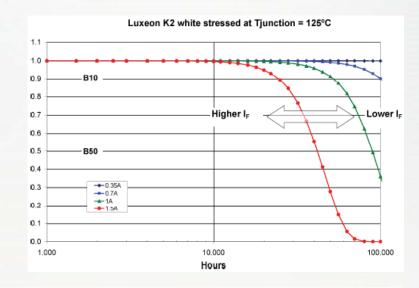


Degradation of luminous efficiency with increasing temperatures

Phosphor Based White LEDs' Color Stability

LEDs' decay constant as a function of short wavelength radiation

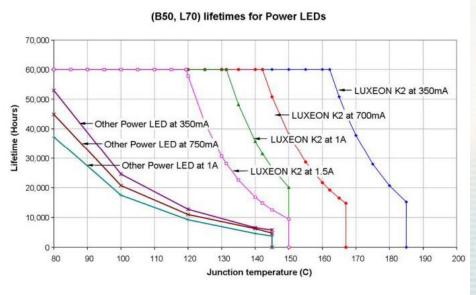

LEDs' decay constant as a function of junction temperature


Subramanian Muthu, Frank J. Schuurmans, and Michael D. Pashley, IEEE journal on selected topics in quantum electrons (2002).

N. Narendran, Y. Gu, J. P. Freyssinier et al., Rensselaer Polutechnic Institute, 2004.

LEDs' Useful Lifetime

Philips Lumileds Luxeon K2



LEDs' lifetime data which Lumileds uses are generated by the Weibull distribution function

$$f(t) = \frac{\beta}{\alpha} \cdot \left(\frac{t}{\alpha}\right) \cdot e^{-\left(\frac{t}{\alpha}\right)^{\beta}}$$

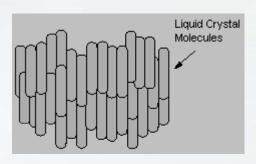
 α, β are determined by experimental data, and the Weibull distribution function is then used to extrapolate the useful lifetime of test LED

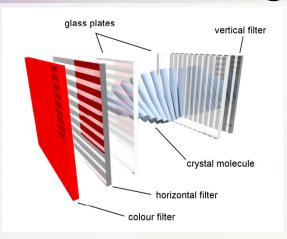
Application 1 - Mobile Appliances

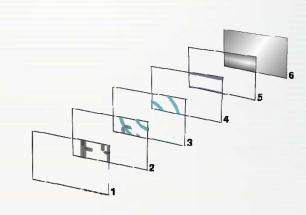
Market share peaked at 57% of the entire LED market in 2004, 48% in 2006

Reasons:

- •Growing global manufacturing competition drives down the profit.
- Alternative technology such as organic light emitting diode




several components of a mobile handset that demand for the use of LEDs


Components with LED usage

LCD Screens

Material: twisted nematic

LED Backlight offers:

- ●Extreme long life
- Immunity to vibration
- Low cost
- Low operating voltage
- Precise control over light intensity

Keypad

intensity white LEDs.

LED offers dynamic light color shift and intensity change

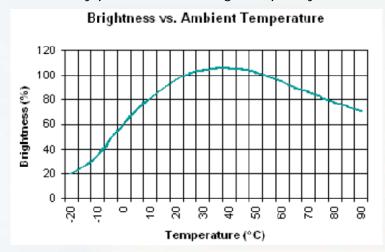
Camera Flash

LED camera flash: NO have charge time.

Sony Ericsson's K750i is quipped with 2Mpixel camera and two high-power LEDs as camera flash

100 | 100 |

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copiesof this license document, but changing it is not allowed.


This component of mobile handsets has great market potential of adapting high

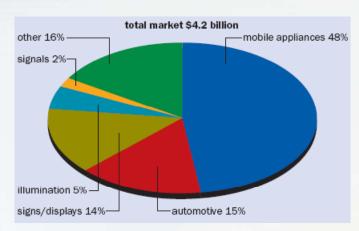
Application 2 - Large LCD Display

Traditional backlight: cold cathode fluorescent lamp (CCFL)

Problems:

- •CCFLs' brightness has temperature dependence, and they do not work well in the low temperature range.
- •CCFLs need time to warm up, so there is a significant color variance over time.
- ●CCFLs only perform well at high frequency sinusoidal current (~35 KHz)

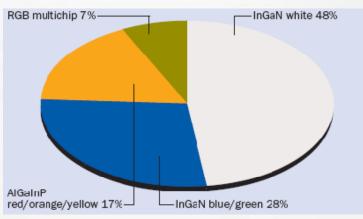
LED solves all these problems, and LED backlit LCD TVs are already commercially available.


Samsung's first LCD TV based on LED backlighting technology LE40M91

Tokyo JVC's LED backlit LCD TV at CEATEC 2006

Maxim Integrated Products, CCFL Characteristics, Available at http://www.maxim-ic.com/appnotes.cfm/an_pk/3528, (2007).

Market Overview


Two Market Trends

High intensity LED market by application in 2006

The market share for the illumination is expected to grow over \$1 billion by 2011.

With a more developed technology, high intensity white LEDs have been used in very general applications such as streetlights in Canada.

High intensity LED market by color in 2006

In fact, high intensity white LEDs have already started to dominated the entire LED market.

Conclusion

- Very mature technology
- Highly applicable
- Exploring new area of manipulating light
- Stage of design and package optimization
- Bright future & profound impact on society
- Solving the energy shortage problem by more effective electricity usage

? Questions?

"I'm trying to turn gold into silicon chips."